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Abstract
Tissue Doppler Imaging (TDI) and TDI-derived strain provide consid-
erably accurate information in the non-invasive assessment of local 
myocardial functions. Given its high temporal and spatial resolution, 
TDI allows assessment of local myocardial functions in each phase of 
cardiac cycle. However, the most important limitation of this method 
is its angle dependence. New techniques to measure myocardial de-
formation, such as speckle tracking echocardiography, overcome the 
angle-dependence limitation of TDI-derived strain. Moreover, these 
techniques provide more unique information about myocardial fiber 
orientation. This review examines the architectural structure and 
function of the myocardium and includes technical revisions of this 
information that will provide a basis for STE. 
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Özet
Doku Doppler görüntüleme (TDI) ve TDI kaynaklı strain bölgesel miyo-
kardial fonksiyonların non-invasiv değerlendirmesinde oldukça doğru 
bilgiler vermektedir. Yüksek temporal ve spatial çözünürlüğü nedeniy-
le, kardiyak siklusun her fazında bölgesel miyokardiyal fonksiyonların 
değerlendirmesine imkan tanır. Ancak, bu metodun en önemli kısıtlı-
lığı açı bağımlı olmasıdır. Speckle tracking echocardiography gibi mi-
yokardiyal deformasyonu ölçen yeni teknikler, TDI kaynaklı strainin açı 
bağımlılığı limitasyonunun üstesinden gelebilmektedir. Üstelik miyo-
kardial fiber orientasyonunu ile ilgili daha değerli bilgiler vermektedir. 
Bu derleme miyokardiyal mimari ve fonksiyonları ve STE için temel oluş-
turacak bu bilgilerin teknik olarak gözden geçirilmesini içermektedir. 
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Introduction

In the assessment of cardiac function and loss of function, 
it is essential to understand the helical architecture of myo-
cardial fibers and concordantly examine the fibers in terms 
of shortening, thickening and torsion movements around its 
own axis during systole and diastole [In addition to the clos-
ing of two opposite walls, basal segment movement towards 
the apex and their rotary motion in opposite directions result 
in the formation of vortex flows (vertical flows), wherein 
energy is considerably more preserved compared with linear 
flow mechanics. This principle, which is applicable for ejec-
tion during systole, is vitally important given that it provides 
effective absorption power throughout diastole [1].

Myocardial Fiber Mechanics
The left ventricle (LV) performs longitudinal shortening-

lengthening movements around the long axis as well as 
thickening and thinning movements around transverse axis, 
whereas both thickening-thinning (in the radial axis) and 

lengthening-shortening (in the circumferential axis) move-
ments occur in the short axis throughout the cardiac cycle 
[2] (Figures 1 and 2). As the heart contracts due to its incom-
pressible nature, myocardial fibers shorten longitudinally and 
thicken transversely. While the cardiac apex is relatively fixed, 
the basal left ventricle approaches the apex throughout sys-
tole and reverts back in two stages during diastole. As a tis-
sue that moves and displaces in time, the left ventricle likely 
fulfill this function via shape changes (deformation) by mov-
ing in different segments and at various velocities [3]. The 
specific velocity and displacement of each segment naturally 
results in different intersegmental velocity from which strain 
rate and thereby strain values, which are frequently used in 
deformation imaging, can be calculated [4]. The frequently 
used deformation parameters include strain, an expression of 
the ability of shortening/thickening in comparison with the 
baseline length proportionally, and strain rate, which reflects 
that this proportional change is made within a specified time 
frame. When evaluated within the cardiac cycle and time 
frames, it is practically impossible to calculate the baseline 



length of the myocardial fiber. Therefore, in contrast to the 
Euler’s equation, which reflects more accurate results, the 
Lagrange’s formula, which reflects this proportion indirectly, 
is more practical. When immediate changes are taken into 
consideration, the Eulerian formula more clearly reflects the 
immediate change, which occurs in the length of the fiber 
from t0 to any t time.

The left ventricle performs the lengthening-shortening/
thickening-thinning movement in a linear fashion, whereas 
it performs rotation mechanics in an angular fashion due to 
the specific electrical stimulation that fiber sequences experi-
ence from endocardium to epicardium/base to the apex [5, 
6]. When the LV is examined from the apex, basal segments 
rotate clockwise, whereas apical segments rotate counter-

clockwise throughout systole [7]. If this movement, which 
is defined as the rotation movement, is considered globally, 
two segments rotating in opposite direction will create an 
angular gradient across the long axis of the heart [8]. The 
total angle value of two segments rotating in opposite direc-
tions is called twist, and torsion parameters can be calculated 
based on the distance between these two segments. In addi-
tion to the temporal changes limiting the use of the Eulerian 
equation, it is almost impossible to evaluate the angular 
movement individually for basal and apical segments on a 
three-dimensional plane. Therefore, although an inward-to-
outward/apex-to-base angular gradient occurring on the 
LV reflects the actual torsion and angular shear stress in an 
angular fashion, its precise calculation requires the measure-
ment of three-dimensional movement by observing the time 
frames in a linear and angular fashion [9-11].

Deformation Imaging
In the 1970s, while the anatomists investigated the fiber 

architecture of the myocardium, McDonald [12] and Ingels 
[13] used cine-angio and cine-radiography through radio-
opaque crystals placed on the epicardium to demonstrate 
that the basal segment not only approached the apex 
throughout systole but also rotated clockwise across the long 
axis of the heart during cardiac surgery. In the 1990s, studies 
performed by a different type of magnetic resonance imag-
ing (MRI), tagged MRI, [14-16] allowed for visualization of the 
movements of the heart on different axes by non-invasive 
methods [14, 17-22]. Although the temporal resolution of 
MRI is low, it was used in pilot studies to describe the rota-
tion mechanics and has an important place in the validation 
of tissue Doppler-based (23, 24) or speckle tracking-based 
echocardiography studies [20-22, 25] bCurrently, tagged MRI 
is generally used for research purposes, and in particular, 
speckle tracking-based echocardiography techniques make 
it possible to perform practical and reproducible measure-
ments for current research in a cost effective manner [26, 27].

How to Calculate Deformation?
Physically, the movement of an object with a velocity and 

its displacement in time is an inevitable result according to 
the rules of physics. However, every object with a velocity is 
not necessarily subject to deformation. Therefore, if velocity, 
displacement and deformation ability are evaluated within 
the concept of time, it is certain that they will reflect differ-
ent results. On the other hand, as two objects displaced at 
the same level do not possess the same velocity, they may 
exhibit different deformation amounts. In that case, deforma-
tion may be measured indirectly over velocity or directly over 
displacement using the same time frame. Velocity can be 
measured with the aid of Doppler, and displacement can be 

Figure 2. Left ventricular radial and circumferential deformation.

Figure 1. Left ventricular longitudinal deformation.

εI: Longitudinal strain

εr: Radial strain

εc: Circumferential strain
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measured by means of tracking the speckles detected on 2D 
grayscale. Consequently, deformation measurements may be 
performed by parametrical tissue Doppler-based and gray-
scale speckle tracking-based techniques (Figure 3). Given the 
angular-dependence disadvantage of Doppler echocardiog-
raphy, it is possible that relatively less angular-dependent 
speckle tracking gives more more accurate results, and the 
technique is more comfortable for patients [28-31].

Basic Principles of Rotation Mechanics
Due to different muscular arrangement and electrical 

activity [6, 32], rotation mechanics are more complex than 
movements performed on other planes. Discussing and 
investigating the rotation mechanics that occur within the 
cardiac cycle will provide more accurate results for systemic 
aspects and in terms of analyzing the variances in the healthy 
and unhealthy conditions. Throughout isovolumetric con-
traction, the shortening of subendocardial fibers and tension 
of the fibers in the subepicardial region result in a short-term 
clockwise rotation in the apex; the basal segment moves in 
the opposite direction during this period (Figure 4). In the 

beginning of the rotation movement, the apex and base pass 
in opposite directions, and afterwards their deflections rep-
resent the different electrical activities from the apex to the 
base and endocardium to epicardium [7]. 

During ejection, subendocardial and subepicardial fibers 
shorten simultaneously. The tension in the apex is greater 
than that of the base, and the potential energy required 
for diastole is stored in the subendocardium at the end of 
systole (subendocardial fibers are more dominant in the 
apex). Torsion is observed counterclockwise in the apex and 
clockwise in the base. In the isovolumetric relaxation phase, 
subepicardial fibers elongate from the base to the apex, 
whereas the fibers in the subendocardial region elongate 
from the apex to the base. The isovolumetric relaxation phase 
is important given that untwisting is initiated before mitral 
valve opening and that the intraventricular pressure gradi-
ent is produced in the period leading to the valve opening 
[33-35]. On the other hand, although conventional methods 
do not provide information regarding this phase of dias-
tole, untwisting onset, velocity and place within the cardiac 
cycle are of great clinical importance [36]. In early diastole, 

Figure 3. Deformation imaging speckle-tracking-based techniques.

Figure 4. Apical and basal rotation.
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immediately following mitral valve opening, the fibers in the 
subendocardial and subepicardial layers continue to relax; 
it is noteworthy that minimal untwisting occurs during this 
period [33, 34] .

In conclusion, speckle tracking echocardiography is a 
rapidly growing technique that has been an important com-
ponent of routine clinical practice in the recent years. Speckle 
tracking echocardiography has been demonstrated to be 
superior to tissue Doppler imaging based on various aspects 
of its deformation imaging. Moreover, speckle tracking echo-
cardiography is an easy-to-use method that provides more 
objective data on myocardial mechanics and reflects the 
regional and global ventricular functions in a superior way in 
terms of diagnosis and prognosis.
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